
MUD Code

Generation

Audit

| security

February 9, 2024



Table of Contents

Table of Contents    __________________________________________________________________    2

Summary    _________________________________________________________________________    3

Scope    ____________________________________________________________________________    4

System Overview    __________________________________________________________________    5

Security Model and Trust Assumptions    _______________________________________________    5

Medium Severity    ___________________________________________________________________    6

M-01 Insufficient Testing                                                                                                                                                      6

M-02 Static Arrays Are Extendable                                                                                                                                      7

Low Severity    ______________________________________________________________________    7

L-01 Encapsulation Recommendation                                                                                                                                 7

L-02 Missing Function Comments                                                                                                                                       9

L-03 Missing Import of Events, Structs, and Enums from Contract to ABI                                                                         9

L-04 Restricting Solidity Version                                                                                                                                        10

L-05 TypeScript Inconsistency                                                                                                                                           10

Notes & Additional Information    ____________________________________________________    11

N-01 Missing Explicit Function Visibility                                                                                                                             11

N-02 Code Cleanup                                                                                                                                                            11

N-03 Imprecise Error Message                                                                                                                                           12

N-04 Naming Suggestions                                                                                                                                                 12

N-05 Bloated Codebase                                                                                                                                                     13

N-06 Unused Variables                                                                                                                                                       14

N-07 Typographical Errors                                                                                                                                                  14

Conclusion    ______________________________________________________________________    15

MUD Code Generation Audit − Table of Contents − 2



Type Library

Timeline From 2023-12-05

To 2023-12-22

Languages TypeScript, Solidity

Total Issues 14 (7 resolved, 4 partially resolved)

Critical Severity

Issues

0 (0 resolved)

High Severity

Issues

0 (0 resolved)

Medium Severity

Issues

2 (1 resolved, 1 partially resolved)

Low Severity Issues 5 (1 resolved, 2 partially resolved)

Notes & Additional

Information

7 (5 resolved, 1 partially resolved)

Summary

MUD Code Generation Audit − Summary − 3



Scope

We audited the latticexyz/mud repository at commit f613359.

In scope were the following contracts:

packages
├── common/src/codegen
│   ├── render-solidity
│   │   ├── common.ts
│   │   ├── renderEnums.ts
│   │   └── renderTypeHelpers.ts
│   └── utils
│       ├── contractToInterface.ts
│       ├── extractUserTypes.ts
│       ├── format.ts
│       ├── formatAndWrite.ts
│       └── loadUserTypesFile.ts
├── world/ts/node/render-solidity
│   ├── renderSystemInterface.ts
│   ├── renderWorld.ts
│   └── worldgen.ts
└── store/ts/codegen
    ├── field.ts
    ├── record.ts
    ├── renderFieldLayout.ts
    ├── renderTable.ts
    ├── renderTableIndex.ts
    ├── renderTypesFromConfig.ts
    ├── tableOptions.ts
    ├── tablegen.ts
    ├── tightcoder
    │   ├── renderDecodeSlice.ts
    │   ├── renderEncodeArray.ts
    │   └── renderFunctions.ts
    └── userType.ts

MUD Code Generation Audit − Scope − 4

https://github.com/latticexyz/mud/tree/main
https://github.com/latticexyz/mud/tree/f6133591a86eb169a7b1b2b8d342733a887af610


System Overview

In our previous audit report, we described the Store  and World  components of the MUD

system. In summary, they provide a low-level storage mechanism and a framework for

additional standard functionality such as access control. A central feature of the system is the

"table" abstraction which represents a structured way to interact with the storage. Developers

would typically introduce app-specific business logic by designing and populating their own

tables.

As a convenience, the Lattice team also provides utility functions for developers to convert a

specification of the desired table structure into a corresponding collection of Solidity libraries.

In fact, this is how the World  tables are generated. This is the main purpose of the code

under review. It also provides a mechanism to generate interfaces for the World  and its

associated systems.

Security Model and Trust
Assumptions

Since the code under review simply generates convenience libraries, it does not introduce any

new security assumptions. All access control and data integrity requirements should be

enforced by the core Store  and World  contracts. As such, this audit primarily focuses on

code quality and correctness. Specifically, we are only interested in scenarios where the table

configuration is accurately specified. Although the code includes several consistency checks, it

is still possible for invalid configurations to produce poorly specified libraries. This outcome is

both reasonable and expected.

MUD Code Generation Audit − System Overview − 5

https://mud.dev/what-is-mud
https://mud.dev/what-is-mud


Medium Severity

M-01 Insufficient Testing

The codebase has several potential gaps in testing which may pose a risk to the robustness

and security of the system. The following list is a collection of identified issues and proposed

recommendations aimed at improving the overall quality of the testing suite:

Overall, the testing coverage of the code under review is notably low. This can lead to

various consequences such as maintainability problems, functionality issues, and

security concerns. Consider thoroughly testing the codebase to enhance system

maintainability and fortify security measures.

Consider adding more tests to ensure a complete coverage of all possible branches. For

example, renderFieldLayout.ts  is one of the few audited files with corresponding

tests. However, the conditions on lines 17, 18, and 22 are not covered by the test suite.

Consider adding tests to check if the values in constants.ts  are equivalent to the

values in constants.sol , similar to the test in storeEvents.test.ts  and 

storeEventsAbi.test.ts .

In both storeEvents.test.ts  and storeEventsAbi.test.ts , only the 

helloStoreEvent  event is being tested. Consider adding more tests to cover all the

existing events.

The tests in storeEvents.test.ts  and storeEventsAbi.test.ts  are

functionally equivalent but have been implemented with slight code variations. Consider

merging logically identical tests into a single test in order to increase the maintainability

of the test suite.

Update: Partially resolved in pull request #2176. The Lattice Labs team stated:

We have addressed the specific examples listed above and added some tests for

various low-level helpers. For the higher-level stuff (rendering functions, etc.), we rely on

the codegen output generated throughout the codebase (packages, examples,

templates, etc.) and check into git to test/review the output we expect. 

We will plan to expand test coverage for specific edge cases as we find things that

break or do not output what we expect. We are also planning a much deeper refactor of

codegen. Before this, we may add a test suite that generates tables, etc. for a specific

• 

• 

• 

• 

• 

MUD Code Generation Audit − Medium Severity − 6

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L17
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L18
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L22
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/constants.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/constants.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/src/constants.sol
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/src/constants.sol
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEventsAbi.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEventsAbi.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEventsAbi.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEventsAbi.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.ts#L1
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.ts#L1
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEvents.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEventsAbi.test.ts
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/storeEventsAbi.test.ts
https://github.com/latticexyz/mud/pull/2176


set of MUD config, and then use that to compare the refactor output to keep things

compatible.

M-02 Static Arrays Are Extendable

Static arrays are treated as dynamic for storage purposes and are cast to and from dynamic

arrays as required. However, this means the corresponding dynamic field methods ( length , 

getItem , push , pop  and update ) are rendered. Since push  and pop  change the array

length, calling them could introduce unexpected behavior. In particular, when retrieving the

contents of an array that is too short, an empty array is returned (and the remaining values are

ignored). On the other hand, if the array is too long, it is truncated to the expected size.

Consider skipping the push  and pop  functions for static arrays. In addition, consider

implementing a simpler length  function that directly returns the known length. Lastly, in the

interests of predictability, when converting dynamic arrays to static ones, consider reverting

whenever the lengths are inconsistent.

Update: Resolved in pull request #2175.

Low Severity

L-01 Encapsulation Recommendation

There are several examples throughout the codebase where rendering functions make strong

assumptions about how and when they are called. For example, the 

renderDecodeDynamicFieldPartial  function assumes that the _blob , _start  and 

_end  variables exist, and that SliceLib  will be available. While the example is intended to

illustrate the claim, this pattern is a broad feature of the entire codebase, which is error-prone

and makes local reasoning difficult.

The rest of this report includes suggestions for specific trivial simplifications, but we also

believe that the codebase could benefit from a more structured approach. Our core

recommendation is to make extensive use of TypeScript objects instead of strings to

accumulate and synthesize business logic. The final rendering should focus entirely on

describing the object in Solidity syntax.

MUD Code Generation Audit − Low Severity − 7

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/userType.ts#L169
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/userType.ts#L170-L171
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L80
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L87
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L83
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L92
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L92
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L80
https://github.com/latticexyz/mud/pull/2175
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/record.ts#L275
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/record.ts#L275


For example, there could be a SolidityFunction  object that individually tracks comments,

input arguments, return values, local variables, visibility, etc. The arguments would also be

objects that track type, location and name. Possible advantages include:

The body of the function could reference specific named parameters or local variables. If

the variable did not exist, it would raise an error.

Functions could only invoke other functions if they exist in the higher 

SolidityContract  object.

Instead of using configurable callbacks to create similar functions, the object could

simply be copied and modified to add new parameters or return values.

The objects could use partial (or Pick ) types to clearly indicate partially complete

structures.

Consider restructuring the rendering code to focus on manipulating TypeScript objects instead

of strings.

Update: Acknowledged, not resolved. The Lattice Labs team stated:

We are going to punt on this because we believe that an object-oriented approach may

be meaningful for a standalone library designed for generating arbitrary solidity code. On

the other hand, MUD codegen has a very narrow purpose and most of its functions are

not meant for external use. Overly generalising it will complicate its development and

maintenance with little benefit to the MUD codebase. 

A SolidityFunction  object could be a full AST which requires unparsing it (using

slang, which is in alpha, or writing our own unparser). This removes any context

assumptions but adds a lot of code. This also does not create typescript compile-time

typechecks. An object with some structured properties (like arguments, name,

comment, etc.) and an unstructured body. The body has to allow many possible

operations besides assignment. 

This slightly isolates context assumptions, but at the cost of replacing simple strings

with complicated objects, and additional helpers that work on said objects. A 

SolidityContract  object would only be meaningful for renderTable , which is

redundant - it would verify imports and variables which are mostly static and verified by

the Solidity compiler.

• 

• 

• 

• 

MUD Code Generation Audit − Low Severity − 8

https://github.com/latticexyz/mud/blob/66728380b7a2d5d4b2a1473cc733258e753febb0/packages/common/src/codegen/render-solidity/common.ts#L140-L145
https://www.typescriptlang.org/docs/handbook/utility-types.html#picktype-keys
https://www.typescriptlang.org/docs/handbook/utility-types.html#picktype-keys


L-02 Missing Function Comments

Most of the functions in the codebase do not have explanatory comments. Also, note that the 

extractUserTypes  function is missing a @param  statement for the fromPath  parameter.

To improve the readability of the codebase, consider documenting all functions and their

parameters.

Update: Resolved in pull request #2185. The Lattice Labs team stated:

We pulled out some return values into TS interfaces to make it easier to document

params and added comment headers to the rest of the functions.

L-03 Missing Import of Events, Structs, and
Enums from Contract to ABI

The renderSystemInterface  function automatically generates an interface from the

corresponding contract. The function takes the imports, the contract name, functions, function

prefix, and errors into account. However, it does not include events, structs, and enums. It is

worth noting that since the interface is generated from the System file, the System cannot

inherit its own interface. Thus, the duplicate definition does not lead to a conflict. One

advantage of generating all the interfaces is that the IWorld  interface will fail to compile if

there are conflicting function signatures or errors across the different systems. This feature can

be extended to the other structures as well.

Consider also including the events, structs, and enums to ensure the generation of a complete

interface.

Update: Partially resolved in pull request #2194. The Lattice Labs team stated:

We played around with this but decided against these changes:

It does not make sense for us to copy over structs/enums into system interfaces

because they end up being treated as different types in Solidity. It's best to

define+import them from a common place outside of systems.

We do not want to encourage defining events in systems because they create side

effects with potentially unexpected results depending on the context in which the

system was called ( call  vs delegatecall ). We did make a small adjustment

to only include errors in interfaces when they are actually used (rather than

including them if they are found in the file).

• 

• 

MUD Code Generation Audit − Low Severity − 9

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/utils/extractUserTypes.ts#L20
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/utils/extractUserTypes.ts#L20
https://github.com/latticexyz/mud/pull/2185
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/node/render-solidity/renderSystemInterface.ts#L16-L27
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/node/render-solidity/renderSystemInterface.ts#L16-L27
https://github.com/latticexyz/mud/pull/2194
https://github.com/latticexyz/mud/pull/2171


L-04 Restricting Solidity Version

In renderedSolidityHeader , the Solidity version has been hardcoded to >= 0.8.21 .

This was chosen to match the manually created part of the codebase. However, this can cause

restrictions when developing contracts on other EVM-compatible chains that often do not

support certain opcodes (e.g., the PUSH0  opcode that was introduced in Solidity version 

0.8.20 ).

Consider making the Solidity version a configurable parameter to increase the possible

applicability of the codebase.

Update: Acknowledged, not resolved. The Lattice Labs team stated:

We are going to punt on this because we want to make use of some recent Solidity

features and many of our contracts, libraries, etc. are meant to be used together as a

whole (i.e., a framework) rather than in isolation. 

While it might be better to set each Solidity file to its minimum viable Solidity version,

this is not something we have seen users ask for and probably does not make sense for

us to maintain.

L-05 TypeScript Inconsistency

The codebase makes extensive use of TypeScript types to validate consistency and improve

code clarity. Here are some instances that could benefit from more consistent types:

renderCommonData  and fieldPortionData  could return a named type instead of

an arbitrary object.

The argument type for renderCommonData  and renderTypeHelpers  could Pick

from RenderTableOptions .

renderTightCoderDecode  and renderTightCoderEncode  could Pick  from 

RenderType .

Update: Partially resolved in pull request #2121 and pull request #2185. The Lattice Labs team

stated:

RenderTableOptions  is a store package concept and importing that into the

common package for reuse would create a circular dependency and the codegen utils in

the common package have no real knowledge of tables. Going to punt on this change.

• 

• 

• 

MUD Code Generation Audit − Low Severity − 10

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L13
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L13
https://eips.ethereum.org/EIPS/eip-3855
https://eips.ethereum.org/EIPS/eip-3855
https://github.com/ethereum/solidity/releases/tag/v0.8.20
https://github.com/ethereum/solidity/releases/tag/v0.8.20
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L32
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L32
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L255
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L255
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L32
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L32
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L3
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L3
https://www.typescriptlang.org/docs/handbook/utility-types.html#picktype-keys
https://www.typescriptlang.org/docs/handbook/utility-types.html#picktype-keys
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tightcoder/renderFunctions.ts#L3
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tightcoder/renderFunctions.ts#L3
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tightcoder/renderFunctions.ts#L28
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tightcoder/renderFunctions.ts#L28
https://github.com/latticexyz/mud/pull/2121
https://github.com/latticexyz/mud/pull/2185


Also going to punt on notes for renderCommonData  and fieldPortionData  as

they are more stylistic suggestions and do not seem entirely necessary. Will save any

cleanup of this for a larger refactor of the codegen utils.

Notes & Additional
Information

N-01 Missing Explicit Function Visibility

The generated functions in renderWrapperStaticArray  and 

renderUnwrapperStaticArray  are implicitly using the default public  visibility. 

To clarify the intent and favor readability, consider explicitly declaring the visibility of the

aforementioned functions.

Update: Resolved. This is not an issue. The Lattice Labs team stated:

This issue seems to be incorrect. These particular renderers are only ever used to render

free functions which cannot have visibility (and they are not meant to be used outside of

the table file). Perhaps an alternative issue could be to either render private library

functions instead of free functions, or to make the use of these TypeScript renderers less

ambiguous.

N-02 Code Cleanup

We identified the following examples of code that can be simplified for better readability:

In record.ts , the if  statements on lines 210 to 227 and 279 to 291 contain repeated

code in both branches. This code can be moved outside the conditional structure.

In formatAndWrite.ts , lines 9 to 12 and lines 22 to 25 can be refactored into a single

function.

This name  parameter could reuse the corresponding constant.

Using an Immediately Invoked Function Expression to set staticResourceData

seems unnecessary.

The regular expression conformity checks present in these functions could use test

(on the regex itself) instead of match . This is because the matched result is not used.

• 

• 

• 

• 

• 

MUD Code Generation Audit − Notes & Additional Information − 11

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L80-L84
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L80-L84
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L115-L119
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/renderTypeHelpers.ts#L115-L119
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/record.ts#L210-L227
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/record.ts#L279-L291
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/utils/formatAndWrite.ts#L9-L12
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/utils/formatAndWrite.ts#L22-L25
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L262
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L262
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L258
https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tableOptions.ts#L78
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tableOptions.ts#L78
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L192-L214


This expression unnecessarily wraps a string inside another string.

Object.assign  modifies the target object. Hence, assigning the result to itself is

unnecessary.

renderTableIndex  could use the tableIdName  in staticResourceData  instead

of recomputing it.

Update: Partially resolved in pull request #2110. The Lattice Labs team stated:

Punting on record.ts  file changes as we think it is clearer to repeat the code

snippets instead of trying to reduce repeated code (and it is unclear how to not

repeat without increasing complexity).

Punting on DRY-ing formatAndWrite.ts  as it feels unnecessary here and

would require a later refactor if we want to introduce any Solidity-specific or TS-

specific code paths.

N-03 Imprecise Error Message

In the encodeFieldLayout  function, both error messages on lines 17 and 18 render the

same message without differentiating whether the dynamic fields or total fields caused the

error.

Consider changing both error messages to show the exact reason for failure.

Update: Resolved in pull request #2114. The Lattice Labs team stated:

We found the same imprecise errors in Solidity so we improved those too.

N-04 Naming Suggestions

Throughout the codebase, some functions and variables can benefit from being renamed:

The length  function should be renamed to getLength .

The renderEncodedLengths  function should be renamed to 

renderEncodeLengths .

The _internal  parameter does not describe its behavior and should be renamed to 

_useExplicitFieldLayout  or something similar.

The renderWorld  function should be renamed to renderWorldInterface .

Update: Resolved in pull request #2115. The Lattice Labs team stated:

• 

• 

• 

• 

• 

• 

• 

• 

• 

MUD Code Generation Audit − Notes & Additional Information − 12

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/userType.ts#L151
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/utils/loadUserTypesFile.ts#L38
https://github.com/latticexyz/mud/blob/66728380b7a2d5d4b2a1473cc733258e753febb0/packages/store/ts/codegen/tableOptions.ts#L83
https://github.com/latticexyz/mud/blob/66728380b7a2d5d4b2a1473cc733258e753febb0/packages/store/ts/codegen/tableOptions.ts#L83
https://github.com/latticexyz/mud/blob/66728380b7a2d5d4b2a1473cc733258e753febb0/packages/store/ts/codegen/renderTableIndex.ts#L11
https://github.com/latticexyz/mud/pull/2110
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L9C23-L9C23
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L9C23-L9C23
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L17
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderFieldLayout.ts#L18
https://github.com/latticexyz/mud/pull/2114
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L92
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L92
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderTable.ts#L194
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderTable.ts#L194
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L136
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L136
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/node/render-solidity/renderWorld.ts#L10
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/node/render-solidity/renderWorld.ts#L10
https://github.com/latticexyz/mud/pull/2115


Going to punt on the length  -> getLength  suggestion because it would conflict

with our pattern of get{FieldName} . For each array field, a corresponding length

method is added (in addition to get , set , etc.).

N-05 Bloated Codebase

Listed below are instances where files are generated upon configuration changes or the

addition of system contracts but not removed when they become unused:

When adding a new system contract, the contract's interface is extracted and written to

the worldgenBaseDirectory . If the system contract is removed or the 

worldgenBaseDirectory  changes, the interface remains.

When adding tables to the configuration or when outputBaseDirectory  changes,

table files are generated and written to the outputBaseDirectory . In this case, only

when a table is removed and outputBaseDirectory  remains the same, the

corresponding generated table file is also removed.

When changing the codegenIndexFilename  or outputBaseDirectory  a new

table index file is written without removing the old one.

When changing the userTypesFilename  or outputBaseDirectory , a new types

file is written without removing the old one.

Consider clearing obsolete files so that the configuration and systems  directory always

match the current codebase.

Update: Acknowledged, not resolved. The Lattice Labs team stated:

We do not keep any sort of manifest to determine what files have been generated

between usages of tablegen  or worldgen  (either run independently as regular

functions or via dev-contracts , or other commands). Therefore, in the context of

these functions, we have no "previous output directory" or "previous index filename" to

know what files to clear.

We work around this by: 

Defaulting to putting codegen files into a consistent directory (i.e., codegen ) so

they can be removed with one command.

Having each template include a clean  script in the package.json  file for

manual cleanup of this directory. We would like to move towards combining

codegen functions/commands into a single util and consolidate some of this

behavior and may wait for deeper changes (like a file manifest) until that time.

• 

• 

• 

• 

1. 

2. 

MUD Code Generation Audit − Notes & Additional Information − 13

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/node/render-solidity/worldgen.ts#L56
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tablegen.ts#L26
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tablegen.ts#L34
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/tablegen.ts#L41


N-06 Unused Variables

methodNameSuffix  is defined and used in an object to convert a RenderType  into a 

RenderField . However, it does not exist on either type and is otherwise unused.

Similarly, the following values are never used:

The UserTypeInfo  type

The _tableId  and _keyArgs  return values from renderCommonData

The name  parameter of StaticResourceData

The worldContractName  parameter of zWorldConfig

The _untypedStore  parameter to the renderWithStore  callback

Consider removing any unused variables from the codebase.

Update: Resolved in pull request #2103. The Lattice Labs team stated:

StaticResourceData 's name  is used by renderTableId . 

worldContractName  was in use but was an oversight when rewriting our deploy

pipeline. We intend to add this back in and this is outside the scope of codegen anyway.

N-07 Typographical Errors

The following typographical errors were identified in the codebase:

dyanmic should be "dynamic".

registed should be "register".

system should be "world".

Consider fixing the aforementioned typographical errors in order to improve the readability of

the codebase.

Update: Resolved in pull request #2101.

• 

• 

• 

• 

• 

• 

• 

• 

MUD Code Generation Audit − Notes & Additional Information − 14

https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L256
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L256
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/field.ts#L259
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/userType.ts#L11
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/userType.ts#L11
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/common.ts#L32
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/types.ts#L18
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/common/src/codegen/render-solidity/types.ts#L18
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/config/worldConfig.ts#L40
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/config/worldConfig.ts#L40
https://github.com/latticexyz/mud/blob/66728380b7a2d5d4b2a1473cc733258e753febb0/packages/common/src/codegen/render-solidity/common.ts#L134
https://github.com/latticexyz/mud/blob/66728380b7a2d5d4b2a1473cc733258e753febb0/packages/common/src/codegen/render-solidity/common.ts#L134
https://github.com/latticexyz/mud/pull/2103
https://github.com/latticexyz/mud/blob/8f41f81f77032b6168f2a4fb8de1dd9bd59e69ec/packages/common/src/codegen/render-solidity/common.ts#L176
https://github.com/latticexyz/mud/blob/8f41f81f77032b6168f2a4fb8de1dd9bd59e69ec/packages/common/src/codegen/render-solidity/common.ts#L176
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/renderTable.ts#L155
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/store/ts/codegen/types.ts#L17
https://github.com/latticexyz/mud/blob/f6133591a86eb169a7b1b2b8d342733a887af610/packages/world/ts/node/render-solidity/worldgen.ts#L75
https://github.com/latticexyz/mud/pull/2101


Conclusion

The code generation system provides a convenient mechanism to map a desired database

configuration onto a corresponding collection of table libraries. This improves developer

experience as the generated code ensures consistency and reliability of the interface, which

allows developers to focus on the higher-level architectural design.

The main recommendations include improving the clarity and reliability of the generation code

itself. This can be achieved by expanding the test suite and refactoring the codebase to use

TypeScript objects instead of strings to structure the business logic. The Lattice team was

highly responsive and helpful throughout the audit period.

MUD Code Generation Audit − Conclusion − 15


	MUD Code Generation Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Security Model and Trust Assumptions
	Medium Severity
	Insufficient Testing
	Static Arrays Are Extendable

	Low Severity
	Encapsulation Recommendation
	Missing Function Comments
	Missing Import of Events, Structs, and Enums from Contract to ABI
	Restricting Solidity Version
	TypeScript Inconsistency

	Notes & Additional Information
	Missing Explicit Function Visibility
	Code Cleanup
	Imprecise Error Message
	Naming Suggestions
	Bloated Codebase
	Unused Variables
	Typographical Errors

	Conclusion


